ON THE ANNIHILATOR GRAPH OF GROUP RINGS
نویسندگان
چکیده
منابع مشابه
On annihilator ideals in skew polynomial rings
This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...
متن کاملON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
Let $alpha$ be an automorphism of a ring $R$. The authors [On skewinverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1)(2012) 138-156] applied the concept of Armendariz rings to inverseskew Laurent series rings and introduced skew inverseLaurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz ringsof inverse ske...
متن کاملThe annihilator-inclusion Ideal graph of a commutative ring
Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...
متن کاملNotes on Annihilator Conditions in Modules over Commutative Rings
Let M be a module over the commutative ring R. In this paper we introduce two new notions, namely strongly coprimal and super coprimal modules. Denote by ZR(M) the set of all zero-divisors of R on M . M is said to be strongly coprimal (resp. super coprimal) if for arbitrary a, b ∈ ZR(M) (resp. every finite subset F of ZR(M)) the annihilator of {a, b} (resp. F ) in M is non-zero. In this paper w...
متن کاملRings with Annihilator Chain Conditions and Right Distributive Rings
We prove that if a right distributive ring R, which has at least one completely prime ideal contained in the Jacobson radical, satisfies either a.c.c or d.c.c. on principal right annihilators, then the prime radical of R is the right singular ideal of R and is completely prime and nilpotent. These results generalize a theorem by Posner for right chain rings.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2017
ISSN: 1015-8634
DOI: 10.4134/bkms.b160135